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• Increasing fraud levels around the world 

• Different technologies and legal requirements makes it 
harder to control 

• Lack of collaboration between academia and 
practitioners, leading to solutions that fail to 
incorporate practical issues of credit card fraud 
detection: 

• Financial comparison measures 

• Huge class imbalance 

• Low-latency response time 
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Simplify transaction flow 
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Network 
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Data 

• Larger European card 
processing company 
 

• Jan2012 – Jun2013 
     card present transactions 

 
• 1,638,772 Transactions 
• 3,444 Frauds 
• 0.21% Fraud rate 

 
• 205,542 EUR lost due to fraud 

on test dataset 
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Raw attributes 

 

 

 

 

 

 

 

• Other attributes: 

Age, country of residence, postal code, type of card  

 

 

 

 

 

 

 

 

 

 

 

 
 

  

Data 

TRXID Client ID Date Amount Location Type 
Merchant 

Group 
Fraud 

1 1 2/1/12 6:00 580 Ger Internet Airlines No 

2 1 2/1/12 6:15 120 Eng Present Car Rent No 

3 2 2/1/12 8:20 12 Bel Present Hotel Yes 

4 1 3/1/12 4:15 60 Esp ATM ATM No 

5 2 3/1/12 9:18 8 Fra Present Retail No 

6 1 3/1/12 9:55 1210 Ita Internet Airlines Yes 
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Derived attributes 

 

 

 

 

 

 

 

 

 

  

 

 
 

  

Data 

Trx 
ID 

Client 
ID 

Date Amount Location Type 
Merchant 

Group 
Fraud 

No. of Trx – same 
client – last 6 hour 

Sum – same client – 
last 7 days 

1 1 2/1/12 6:00 580 Ger Internet Airlines No 0 0 

2 1 2/1/12 6:15 120 Eng Present Car Renting No 1 580 

3 2 2/1/12 8:20 12 Bel Present Hotel Yes 0 0 

4 1 3/1/12 4:15 60 Esp ATM ATM No 0 700 

5 2 3/1/12 9:18 8 Fra Present Retail No 0 12 

6 1 3/1/12 9:55 1210 Ita Internet Airlines Yes 1 760 

By Group Last Function 

Client None hour Count 

Credit Card Transaction Type day Sum(Amount) 

Merchant week Avg(Amount) 

Merchant Category month 

Merchant Country 3 months 

–  Combination of following criteria: 
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Date of transaction 
04/03/2012 - 03:14 
07/03/2012 - 00:47 
07/03/2012 - 02:57 
08/03/2012 - 02:08 
14/03/2012 - 22:15 
25/03/2012 - 05:03 
26/03/2012 - 21:51 
28/03/2012 - 03:41 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 =
1

𝑛
 𝑡 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑀𝑒𝑎𝑛 = tan _2−1  sin(𝑡) , cos(𝑡)  

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑆𝑡𝑑 = 𝑙𝑛 1
1

𝑛
 sin 𝑡

2

+
1

𝑛
 cos 𝑡

2

  

𝑡 ~ 𝑣𝑜𝑛𝑚𝑖𝑠𝑒𝑠 𝑘 ≈ 1 𝑠𝑡𝑑  

𝑃 −𝑧𝑡 < 𝑡 < 𝑧𝑡 = 0.95 

-1

-1

24h 

6h 

12h 

18h 

Data 
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Date of transaction 
04/03/2012 - 03:14 
07/03/2012 - 00:47 
07/03/2012 - 02:57 
08/03/2012 - 02:08 
14/03/2012 - 22:15 
25/03/2012 - 05:03 
26/03/2012 - 21:51 
28/03/2012 - 03:41 

-1

-1

24h 

6h 

12h 

18h 

02/04/2012 - 02:02 

03/04/2012 - 12:10 

new features 

Inside CI(0.95) last 30 days 

Inside CI(0.95) last 7 days 

Inside CI(0.5) last 30 days 

Inside CI(0.5) last 7 days 

Data 

11 



 

 

 

 

 

 

• Misclassification = 1 −
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   

• Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

• Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

• F-Score = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Evaluation 

True Class (𝑦𝑖) 

Fraud (𝑦𝑖=1) 
Legitimate 

(𝑦𝑖=0) 

Predicted 
class (𝑝𝑖) 

Fraud (𝑐𝑖=1)  TP  FP 

Legitimate (𝑐𝑖=0) FN TN 

Confusion matrix 
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Motivation: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Equal misclassification results 

• Frauds carry different cost 
 

 

 

 

 

 

 

 

 

 

 

 

Evaluation  - Financial measure 

TRX
ID 

Amount Fraud 

1 580 No 

2 120 No 

3 12 Yes 

4 60 No 

5 8 No 

6 1210 Yes 

Miss-Class 2 / 6 

Cost 1222 

Prediction 
(Fraud?) 

No 

No 

Yes 

No 

Yes 

No 

2 / 6 

1212 

Prediction 
(Fraud?) 

No 

No 

No 

No 

Yes 

Yes 

2 / 6 

14 

Prediction 
(Fraud?) 

No 

No 

No 

No 

No 

No 

Algorithm 1 Algorithm 3 Algorithm 2 
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Cost matrix 

 

 

 

 

 
 

 

where the cost associated with two types of correct classification, true 
positives and true negatives, and the two types of misclassification errors, 
false positives and false negatives, are presented. 

 

Evaluation 
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• As discussed in [Elkan 2001], the cost of correct classification should always 

be lower than the one of misclassification. These are referred to as 
“reasonableness” conditions. 

and 

 
• Using the “reasonableness” conditions, the cost matrix can be scaled and 

shifted to a simpler one with only one degree of freedom 

 

 

 
 

Evaluation 
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Cost-sensitive problem definition 

 
• Classification problem cost characteristic: 

 

 

with mean          and std  

 

 

 

 
 

Evaluation 
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• A classification problem is defined as: 



Evaluation 
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refers to the administrative cost and            to the amount of transaction i 

Cost matrix: Fraud detection 

 

 

 

 

 
 

 



Cost-sensitive problem evaluation 

 
• Cost of applying a classifier to a given set 

 

 

 

• Savings are: 

 

 

where  

 
and       ,        refers to special cases where for all the examples,        equals 
to 0 and 1 respectively. 

 
 

Evaluation 
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• Model 

 

 

 

 

• Cost Function 

 

Logistic Regression 



 

• Cost Matrix 

 

 

 

Cost Sensitive Logistic Regression 

• Cost Function 

• Objective 

 Find 𝜃 that minimized the cost function 



• Cost Function 

 

 

• Gradient 

 

 

 

• Hessian 

Cost Sensitive Logistic Regression 



                        1%                 5%               10%             20%               50% 

 

Experiments –  Logistic Regression 

Sub-sampling procedure: 
 

0.467%         

Select all the frauds and a random sample of the legitimate transactions. 

620,000 

310,000 

62,000 
31,000 15,500 5,200 

Fraud Percentage 

* OLD Dataset 



Experiments – Logistic Regression 

Results  
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• Decision model based on quantifying tradeoffs between 
various decisions using probabilities and the costs that 
accompany such decisions 

 

• Risk of classification 

 

 

 

 

 

Bayes Minimum Risk 
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• Using the different risks the prediction is made based on the following 
condition: 

 

 

 

 

 

 

 

 

 

Bayes Minimum Risk 
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• Example-dependent threshold 

Is always defined taking into account the “reasonableness” conditions 



Probability Calibration 

 

 

• When using the output of a binary classifier as a basis for 
decision making, there is a need for a probability that not 
only separates well between positive and negative examples, 
but that also assesses the real probability of the event 
[Cohen and Goldszmidt 2004] 
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Probability Calibration 

• Reliability Diagram 
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31 
is the positive rate and        is the predicted probability 



Probability Calibration 

• ROC Convex Hull calibration [Hernandez-Orallo et al. 2012]  

 

 

 

 

 

ROC Curve Class (y) Prob (p) 

0 0.0 

1 0.1 

0 0.2 

0 0.3 

1 0.4 

0 0.5 

1 0.6 

1 0.7 

0 0.8 

1 0.9 

1 1.0 
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Probability Calibration 

• ROC Convex Hull calibration 

 

 

 

 

 

ROC Convex Hull Curve 

Class (y) Prob (p) Cal Prob 

0.0 0 0 

0.1 1 0.333 

0.2 0 0.333 

0.3 0 0.333 

0.4 1 0.5 

0.5 0 0.5 

0.6 1 0.666 

0.7 1 0.666 

0.8 0 0.666 

0.9 1 1 

1.0 1 1 

the calibrated probabilities are extracted by first grouping the probabilities 
according to the points in the ROCCH curve, and then the calibrated probabilities 
are equal to the slope for each group. 
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• Reliability Diagram 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

base RF DT LR

34 



Experiments – Bayes Minimum Risk 
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• Estimation of the fraud probabilities using one of the following 
algorithms: 

1. Random Forest 

2. Decision Trees 

3. Logistic Regression 

 

• For each algorithm comparison of 

• Raw prediction 

• Bayes Minimum Risk 

• Probability Calibration and Bayes Minimum Risk 

 

• Trained using the different sets 

• Training 

• Under-sampling 

 

 

 

 



Experiments – Bayes Minimum Risk 
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EDCS – Decision trees 
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Decision trees 

 

Classification model that iteratively creates binary decision 
rules (         ) that maximize certain criteria 

 

Where (         ) refers to making a rule using feature j on 
value m 

 

 

 



EDCS – Decision trees 
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Decision trees - Construction 

 

 

 

 

 
 

 

 

S 

S S 

• Then the impurity of each leaf is calculated using: 

• Afterwards the gain of applying a given rule to the set     is: 



EDCS – Decision trees 
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Decision trees - Construction 
• The rule that maximizes the gain is selected 

 

 

 

 

 

S 

S S 

S S S S 

S S S S 

• The process is repeated until a stopping criteria is met: 



EDCS – Decision trees 
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Decision trees - Pruning 
• Calculation of the Tree error and pruned Tree error 

 

 
S 

S S 

S S S S 

S S S S 

• After calculating the pruning criteria for all possible trees. The maximum 
improvement is selected and the Tree is pruned. 

• Later the process is repeated until there is no further improvement. 

S 

S S 

S S S S 

S S 

S 

S S 

S S 



EDCS – Decision trees 
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• Maximize the accuracy is different than maximizing the cost. 

• To solve this, some studies had been proposed method that aim to 
introduce the cost-sensitivity into the algorithms [Lomax and Vadera 
2013].  

• However, research have been focused on class-dependent methods 
[Draper et al. 1994; Ting 2002; Ling et al. 2004; Li et al. 2005; Kretowski 
and Grzes 2006; Vadera 2010] 

• We propose: 

• Example-dependent  cost based impurity measure 

• Example-dependent  cost based pruning criteria 



EDCS – Decision trees 
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Cost based impurity measure 

 

 

 

 

 
 

 

 

S 

S S 

• The impurity of each leaf is calculated using: 

• Afterwards the gain of applying a given rule to the set     is: 



EDCS – Decision trees 
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Weighted vs. not weighted gain 

 

 

 

 
• Using the not weighted gain, when booths left and right leafs have the 

same prediction, the gain is equal 0 

 

 if 

 

then 



EDCS – Decision trees 
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Cost sensitive pruning 

 

 

 

 

 
• New pruning criteria that evaluates the improvement in cost of 

eliminating a particular branch 

 

 

 

 
 

 



Experiments - EDCS – Decision trees 
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• Comparison of the following algorithms: 
• Decision Tree – not pruned 

• Decision Tree – error based pruning 

• Decision Tree – cost based pruning 

• EDCS-Decision Tree – not pruned 

• EDCS-Decision Tree – error based pruning 

• EDCS-Decision Tree – cost based pruning 

 

• Trained using the different sets: 
• Training 

• Under-sampling 

• Cost-proportionate Rejecting-sampling 

• Cost-proportionate Over-sampling 
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Experiments - EDCS – Decision trees 
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Experiments – Comparison 
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• New framework for defining cost-sensitive problems 
 

• Including the cost into Logistic Regression increases the savings 
 

• Bayes minimum risk model arise to better results measure by savings 
and results are independent of the base algorithm used 
 

• Calibration of probabilities help to achieve further savings 
 

• Example-dependent cost-sensitive decision trees improves the 
savings and have a much lower training time than traditional decision 
trees 
 
 

 

 

 

Conclusions 
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Future work 

• Boosted Example Dependent Cost Sensitive Decision 
Trees 
 

• Example-Dependent Cost-Sensitive Calibration 
Method 
 

• Reinforced Learning (Asynchronous feedback) 
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